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The phenomena of supercritical fluid extraction (SFE) and its reverse effect, 
which is known as retrograde condensation (RC), have found new and impor- 
tant applications in industrial separation of chemical compounds and recovery 
and processing of natural products and fossil fuels. Full-scale industrial 
utilization of SFE/RC processes requires knowledge about thermodynamic and 
transport characteristics of the asymmetric mixtures involved and the develop- 
ment of predictive modeling and correlation techniques for performance of the 
SFE/RC system under consideration. In this report, through the application of 
statistical mechanical techniques, the reasons for the lack of accuracy of existing 
predictive approaches are described and they are improved. It is demonstrated 
that these techniques also allow us to study the effect of mixed supercritical 
solvents on the solubility of heavy solutes (solids) at different compositions of 
the solvents, pressures, and temperatures. Fluid phase equilibrium algorithms 
based on the conformal solution van der Waals mixing rules and different 
equations of state are presented for the prediction of solubilities of heavy liquid 
in supercritical gases. It is shown that the Peng-Robinson equation of state 
based on conformal solution theory can predict solubilites of heavy liquid in 
supercritical gases more accurately than the van der Waals and Redlich-Kwong 
equations of state. 

KEY WORDS: conformal solution theory; equation of state; mixing rules; 
mixtures; retrograde condensation; statistical mechanics; supercritical fluid 
extraction. 
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1879 by Hannay and Hogarth [3]. They discovered that solid compounds 
could be dissolved in supercritical fluids having densities near that of a 
liquid. The renewed interest in the SFE/RC process is based on the 
appreciable increase in solvent power of supercritical fluids at temperatures 
and pressures above, but not far removed from, their critical point. In 
recent years, an understanding of interaction of the supercritical solvent 
with condensed compounds (liquid or solid) has received much interest in 
process extraction and the development of energy-related processes 
[-2, 17, 23]. 

When the supercritical fluid undergoes a sudden temperature or 
pressure reduction, the special properties are often lost. Probably the most 
important property lost at lower pressures is the solubility of some com- 
pounds in supercritical fluids. The solubility decay of most organic substan- 
ces at subcritical pressures proves to be exploitable in that a substance can 
be extracted at supercritical conditions and precipitated by merely reducing 
the pressure. Thus supercritical systems combine the useful qualities of 
liquids and gases to produce a very versatile fluid. In order to demonstrate 
the phenomena of the SFE/RC process and their relationship with the 
phase equilibrium characteristics of mixtures, Figs. 1 and 2 are presented. 
In Fig. 1, six different classes of binary mixtures are distinguished from 
each other in P T  diagrams by the shapes and number of their critical lines, 
the existence or absence of three-phase lines, and the manner in which the 
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Fig. 2. P T  and a corresponding P Y  diagram of a petroleum reservoir fluid exhibiting 
retrograde condensation [6, 22]. 

critical lines connect with the pure component critical points and three- 
phase lines. In Fig. 2A the P T  diagram of a fluid mixture exhibiting 
retrograde condensation is presented. Figure 2B consists of the pressure 
versus gas phase composition of a heavy component of this fluid mixture at 
three different temperatures. According to these figures for a given tem- 
perature, above the critical solution temperature, with an increase in 
pressure, the concentration (or solubility) of heavy components in the 
supercritical gas will decrease. At higher pressures the solubility starts to 
increase rapidly and it reaches a maximum at a pressure corresponding to 
a region slightly above the retrograde region. 

Compounds which dissolve in supercritical solvents tend to exhibit 
their lowest solubilities in the solvent at the lowest pressures. As the 
pressure rises, so does the solubility of the solute. Some solutes exhibit a 
crossover effect in supercritical solvents at a certain specific pressure to 
each solute, or crossover pressure. The crossover effect is characterized by 
higher solubilities of the solute at lower temperatures below the crossover 
pressure and higher solute solubilities at higher temperatures above the 
crossover pressure [30]. As the pressure continues to rise, so does the 
solubility of the solute; this trend ends at the solubility peak, which is the 
pressure at which the solute solubility in the solvent is the greatest com- 
pared to any other pressure. When the pressure is above the solubility peak 
pressure, the solubility of the solute decays with continued pressure 
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increases. Such effects can be described utilizing the principles of statistical 
mechanics, as demonstrated later in this report. 

The presence of cosolvents or entrainers can sometimes enhance the 
solubility of the solute as much as one or two orders of magnitude [31]. 
Typical cosolvents, such as ethanol, methanol, and acetone, increase the 
solubility of solutes containing alcohol or other polar groups due to 
hydrogen bonding between the solute and the cosolvent. On the other 
hand, cosolvents can also form solid complexes with the solute, thus 
reducing the solubility enhancement effect. Because some cosolvent-solute 
combinations form complexes which lower the solubility of the solute, each 
case must be individually studied to determine the optimum cosolvent. By 
utilizing the principles of statistical mechanics such effects are 
demonstrated later in this report. 

Prediction of solubilities of heavy liquid hydrocarbon in compressed 
nitrogen and methane gases based on van der Waals mixing rules and dif- 
ferent equations of state [van der Waals (vdW), Redlich-Kwong (RK), 
and Peng-Robinson (PR)] is performed later in this report. The 
expressions of the fugacity coefficient for the above three representative 
equations of state with the van der Waals mixing rules, which are based on 
conformal solution theory, are used here to predict solubilities of conden- 
sed compounds (liquid or solid) in compressed gases. The mixing rules 
which are used here were derived using the conformal solution theory of 
statistical mechanic. 

The major requirement in the design of SFE systems is the choice of a 
solvent which will cause a sharp change in the solubility of the solute due 
to changes in pressure or temperature. Since an essentially infinite number 
of supercritical solvents can be formed from the currently known com- 
pounds, there is little hope of ever generating a sufficient amount of 
experimental data to meet present, much less future, needs. Knowledge 
about molecular thermodynamics of fluid mixtures consisting of molecules 
with large molecular size and shape differences is often required for the 
accurate prediction of solubilities of heavy solutes in supercritical solvents. 
The present report is an initial effort toward the development of predictive 
techniques for SFE/RC phenomena. 

2. THERMODYNAMIC MODELING OF SFE]RC PHENOMENA 

One can describe and model the phenomena of SFE/RC by utilizing 
theories of asymmetric mixtures of statistical mechanics and ther- 
modynamics. In general, there exist two statistical mechanical ways for the 
development of theories of mixtures [8]. One way is through the use of 
rigorous statistical mechanics and the incorporation of intermolecular 
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potential energy function in its detailed form. The second way is through 
the use of the conformal solution theory for the development of mixing 
rules and the use of equations of state of pure fluids [9]. There has been 
substantial progress made in the past two decades in the developments of 
both rigorous statistical mechanics of mixtures and conformal solution 
mixing rules [1, 8, 12, 14, 15, 26]. However, there is little or no infor- 
mation available about intermolecular interaction parameters of the kinds 
of asymmetric mixtures which are dealt with in the SFE/RC industries. As 
a result, the utility of the rigorous statistical mechanical approach for the 
analysis and prediction of SFE/RC phenomena is presently limited. 

Conformal solutions refer to substances whose intermolecular poten- 
tial energy functions, ~b0., are related to each other and to those of a 
reference pure fluid, usually designated by the subscript 00. 

: i: = ~:~oo( r/h ~/3) (1) 

For substances whose intermolecular potential energy function can be 
represented by an equation of the form 

~/=  E~/[ (L j r )"  - (Lo/r) m ] (2) 

and for which exponents m and n are the same as for the reference sub- 
stance, the conformal solution parameters f~/and hi~ will be defined by the 
following relations with respect to the intermolecular potential energy 
parameters Ei/and the intermolecular length parameter L,/: 

f~j= EJEoo, h,j = (Li//Loo) 3 (3) 

The basic concept of the CST of mixtures is the definition of the conformal 
solution parameters of the mixture f~x and h~x, which are related to the 
conformal solution parameters of the components of the mixture and 
mixture composition according to the following equations: 

fxx=f~x(f~j,h~/;xi, p, T); hx.~=hx.~(f~j, hu;xi, p, T) (4) 

Equations (4) are called the conformal solution mixing rules. Functional 
forms of these mixing rules will be different for different theories of 
mixtures as demonstrated in Table I. In Table I the one-fluid and also the 
c-fluid conformal solution mixing rules are reported for different mixture 
theories [14]. In this table RMA stands for the random mixing 
approximation theory [13], vdW stands for the van der Waals theory of 
mixtures [9], HSE stands for the hard-sphere expansion theory [11], 
DEX stands for the density expansion theory [12], CSA stands for the 
conformal solution approximation theory [2], and APM stands for the 



Table I. Conformal Solution Mixing Rules According to Different Theories [13] 

One-fluid mixing rules 

RMA 
I ~  ]31z/I- ]~lZ 

j ~ f L i  j 

j ~ i j 

vdW 

Lhx= Z Z x,x.f, jho 
i y 

hx= Z Z x,xjh ~ 
i ) 

HSE 

Lhx = Z Z x,~A,~ 
i j 

j ~ ~ i j 

DEX 

fxhx = ~ ~ xlxjfijho{1 - (fo/f~, 1)[Auxi/kr+ TAC.~JAux] } 
i j 

hx = ~ 2 x~xjh~ 
i j 

Multifluid mixing rules 

RMA 

I 13"t  1" f,.,h~, = E X~D,h~, Z xjDh;. 
L J ~ - - ~  J 

vdW 

fx,hxi = Z xjfoho 
J 

h~ = F, xAo 
J 

HSE 

L,hx,= Z x#,.h,j 
3 

DEX 

f~,h., = Z xjf ,  jhij{ 1 -- (Ljlfx,-  1) [Au .dkr+  TAC..]Aux] } 
J 

G ,  = ~, xjho 
J 

A~=pRT~cr~; Kr= (1/V)(c~V/aP)T 
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average potential model theory [ 13]. According to Table I DEX and CSA 
mixing rules are density and temperature dependent, while the other mix- 
ing rules are independent of p and T [ 14]. In the analysis made earlier by 
other investigators it was demonstrated that the RMA and APM mixing 
rules are valid for a mixture consisting of components with close molecular 
sizes and shapes [14, 20]. The HSE mixing rules are actually for the excess 
properties of mixtures over the hard-sphere mixture [11]. The DEX and 
CSA mixing rules, which are composition-, temperature-, and density- 
dependent mixing rules [12 14], require special thermodynamic con- 
sistency rules in order to be applied for mixture calculations. In the present 
report we utilize the van der Waals mixing rules in order to calculate the 
solubility of solutes in supercritical mixed solvents. As demonstrated in the 
next section the conformal solution van der Waals mixing rules, when 
joined with the PR equation of state, give us an opportunity to perform the 
accurate calculation of the solubility of heavy solutes in supercritical 
solvents. In the formulation of a mixture theory we also need to know the 
combining rules for unlike-interaction potential parameters which are 
expressed by the following expressions [5]: 

f , j :  (1 -k,j)h,~(f,,fjHh~ihi,) '/2 
(5) 

h(i = (1 - l~i){ (h]/3 + h)/3)12} 3 

where k U and l 0 are adjustable parameters. 
Utilizing the conformal solution approximation (CSA) and assuming 

that the scaled radial distribution functions (RDFs) between every two 
species of a fluid mixture are all identical [9, 14], the following mixing 
rules will be derived: 

= E E x,x,f,  jh / 
i / (6) 

h x=Z Z x xjhij 
i / 

where hxx and f~x are the conformal solution parameters of a hypothetical 
pure fluid which can represent the mixture. Equations (6) are actually the 
van der Waals mixing rules, which are well known. 

With the aid of the conformal solution guidelines [8, 14], one can 
develop mixing rules for the three representative cubic equations of state 
(vdW, RK, and PR). The vdW mixing rules for the different equations of 
state can be derived [8]. 

(i) The van der Waals equation of state can be written as 

Z = P v / R T :  v / (v  - b)  - a / ( v R T )  (7) 

840/8/4-4 
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which was proposed by J. D. van der Waals [25] in 1873. The van der 
Waals mixing rules will be in the following form: 

a =  2 2 xix/ai j  
' J ( 8 )  

b = Z  Y x,x;b/j 
i ] 

From Eqs. (5), the following conformal solution combining rules can be 
derived: 

a i /=  (1 - k u )  bij(aiiajj/biibjj) 1/2 
(9) 

b o. = (1 - lij){(b]/3 + b~/3)/2} 3 

(ii) The Redl ich-Kwong equation of state [12] can be written as 

Z = P v / R T  = v/(v - b) - a/RT3/2(v + b) (10) 

The conformal solution van der Waals mixing rules can be derived as 

j ~ - - ~  i j 
(11) 

b = Y, y~ x , x j G  
i j 

The conformal solution combining rules for a• and b~will be the same as 
Eqs. (9). 

The Peng-Robinson equation of state [18] is in the following (iii) 
form: 

where 

z = v/(v - b) - a(T)  v / { R T [ v ( v  + b) + b(v - b)] } (12) 

a(T)  = a(T~){ 1 + tc(l - T r l ) }  2 

a(Tr = 0.45724(RTo)2/Pc 

~c = 0.37464 + 1.54226co - 0.2699co 2 

b = O.0778RTJPc,  co = Pitzer's acentric factor 

To extend the PR equation of state to mixtures, the following mixing rules 
are used: 

a = ~ ~ xixsao.(T); ais(T) = Jail(T) aj j ( r ) ]  1/211 - ko.(r)]  
i j (13) 

b = ~ , x i b i  
i 
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In order to apply the conformal solution mixing rules for the PR equation 
of state, thermodynamic variables must be separated from the constants of 
the equation of state. Then the PR equation of state will be written as the 
following [8]:  

Z = P v / R T =  v / ( v  - b)  - { a / R T +  c --  2 d a c / R T } / { ( v  + b)  + ( b / v ) ( v  - b)} 

(14) 

where 

a = a(Tc)(1 + K) 2 and c = a ( T c ) ~ c 2 / R T c  

ac = a( T~) = 0 .4572(  R T ~ ) 2 / P c  

~c = 0.37464 + 1.54226co - 0,26992co 2 

b = O . 0 7 7 8 R T j P c ,  co = Pitzer's acentric factor 

Then the conformal solution van der Waals mixing rules can be derived as 
the following [8]:  

E Z xixja j 
i / 

b = Z Z  ixjb j (15) 
i / 

c=ZY  
i ] 

with the following conformal solution combining rules for ai/, b~j, and c,j: 

a~j = (1 --  ko. ) b( j (ai iaj j /b i ib#)  1/2 

bij = (1 - l(/)[(b]/3 + b) f3)2]  3 (16) 

Cij = (1 - m~i ) [ ( C ] / 3  -~- c}/3)/2] 3 

The above three representative cubic equations of state will be used to 
predict solubilities of condensed compounds in supercritical gases. To 
calculate the solubilities of heavy solutes in compressed gases, the fluid 
phase equilibrium algorithms are used. Since the chemical potentials are 
functions of temperature, pressure, and compositions, the equilibrium con- 
ditions 

# ? ( r ,  P; { yi)) = p c ( r ,  P; {Xi}), i =  1, 2 ..... n (17) 

where g~ is the chemical potential of component i in the gas phase and pC 
is the chemical potential of component i in the condensed (liquid or solid) 
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phase. For gas-liquid equilibrium calculations, the solubilities of the liquid 
condensed phase in a supercritical gas can be expressed as the following: 

Yi = Xi~L/~ (18) 

where x i is the composition of component i in the liquid condensed phase, 
~b~ is the fagacity coefficient of component i in the liquid condensed phase, 
and ~b~ is the fugacity coefficient of component i in the gas phase. For gas- 
solid equilibrium calculations, the solubilities of the solid condensed phase 
in a supercritical gas can be expressed as the following [12]: 

. sat {S; ) y , -  (Pi /P)(1/Oi) O, exp (v~~ dP (19) 
s a t  

where ~b~ =t is the fugacity coefficient of the solid condensed phase at 
saturation pressure p~at of pure component i, and ~ is the gas-phase 
fugacity coefficient at pressure P of component i in the mixture. The vapor 
pressure of the solid is small, and the fugacity coefficient of the pure solid 
at saturation pressure is almost unity. Also, one can assume that v~ ~ is 
independent of pressure. Thus Eq. (19) can be converted to the following 
form [12]: 

y~ = (p~at/p)(1/~bi) exp{vSolid(p _ p~at)/RT } (20) 

In order to calculate the solubilities for both liquid and solid in super- 
critical gases, the following expressions of the fugacity coefficient are used: 

RTln ~i= [(c~P/On~)r.~,,v- (RT/V)] d V - R T l n  Z (21) 

For the vdW equation of state, the following expression for the fugacity 
coefficient can be derived: 

~,= [Rr/(v-b)] (1/p) 

x exp[(-b+2~ x/bo.)/(v-b)-Z(~j xja,/)/(vRT)] (22) 
The expression for the fugacity coefficient of the RK equation of state can 
be written in the following form: 

i n ( ) i = l n [ v / ( v - b ) ] - l n Z + ( 2 ~ x j b o - - b ) / ( v - b )  

- (1/bRT3/2)(2~xjai i ) ln[(v+b)/v]  (23) 
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The expression for the fugacity coefficient of the PR equation of state can 
be written in the following form: 

in ~bi= {(2  ~ x : b a - b ) / b } ( Z - 1 ) - l n ( Z - B * )  

--(A*/2x/2B*){(1/c~*)[(2~x/a~/)+2RT~x/c(/ 

- x/RT[2x/(a/c)~ X/fi/+2x/(c/a' (~  x/a~/)ll 

- ( 2  ax /b( / -b) t  ln[(Z + B*+  ~/2B*)/(Z + B* - x/2B*)] (24) 
\ j 

where 

~* = a + cRT-  2x/(acRT) 
A* = o:* P/( RT) 2 
B* = bP/RT 

The above equations can be utilized in order to perform phase equilibrium 
calculations for the purpose of predicting the solubility of condensed 
solutes in supercritical gases. 

3. CALCULATIONS AND RESULTS 

Using the van der Waals mixing rules for the three equations of state 
[van der Waals (vdW), Redlich-Kwong (RK), and Peng-Robinson (PR)] 
based on the conformal solution theory, the solubilities of heavy liquid in 
compressed nitrogen and methane are reported in Tables II and III. The 
solubilities of heavy liquid in compressed gases are calculated by using 
Eq. (18). According to Tables II and III, predictions of the conformal 
solution PR equation of state are closer (by one order of magnitude) to the 
experimental data than those of the RK equation of state, while the predic- 
tions by the RK equation of state are closer to the experimental data than 
the predictions by the vdW equation of state. It is clear that the conformal 
solution PR equation of state can predict the solubilities of heavy liquid 
more accurately than the conformal solution vdW and RK equations of 
state. In Table IV, the numerical values of binary interaction parameters 
for the different equations of state are reported. The absolute values of 
vinary interaction parameters (ki:, l~/, and rn~/) calculated by the conformal 
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Table II. Solubilities of Heavy Liquid (n-Decane) in Compressed Nitrogen 
Gas According to the Different Equations of State 

Y2 X 10 3 ~ 

System T (K) P (atm) EXP vdW RK PR 

Nitrogen- 
n-decane 

323 41.7 0.416 24.93 3.66 0.380 
51.0 0,395 22.70 3.44 0.350 
91.0 0,427 21.90 3.50 0.340 

348 31.5 1,540 48.37 9.82 1.460 
38.0 1,410 42.52 8.82 1.330 

373 87.4 2,700 46.47 13.26 2.400 
100.6 2.710 47.04 13.25 2.330 

398 70.4 6.570 67.65 24.15 5.800 
99.6 6.160 64.78 22.45 5.060 

EXP, experimental values; vdW, van der Waals equation of state; RK, Redlich-Kwong 
equation of state; PR, Peng-Robinson equation of state. 

Table III. Solubilities of Heavy Liquid (n-Decane) in Compressed Methane 
Gas According to the Different Equations of State 

Y2 X 103 ~ 

System T (K) P (atm) EXP vdW RK PR 

Methane- 
n-decane 

323 60.1 0.558 17.40 3.440 0.360 
74.1 0.628 17.51 3.700 0.380 

105.2 0.953 23.21 4.990 0.460 

348 88.2 1.710 29.08 8.300 1.110 
107.8 2.190 33.87 9.480 1.190 

373 72.5 3.570 42.37 14.81 2.740 
88.2 3.780 42.72 15.16 2.670 

398 75.4 7.010 67.53 25.81 6.090 
84.8 7.180 101.5 25.71 5.880 

a EXP, experimental values; vdW, van der Waals equation of state; RK, Redlich-Kwong 
equation of state; PR, Peng-Robinson equation of state. 
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Table IV. The Binary Interaction Parameters  for Heavy Liquid (n-Decane) 
and Compressed Gas (Nitrogen and Methane)  Interaction as 

Calculated by the Use of Different Equations of State 

System E O S  ~ k 1 2  I t 2  m 1 2  

Nit rogen-  vdW - 5.3548 0.5966 
n-decane RK - 0.3970 0.3244 

PR 0.2832 - 0.0307 0.2395 

Methane vdW - 3.0356 0.5655 
n-decane RK - 0.2940 0.1645 

PR 0.1334 - 0.0394 0.0444 

EOS, equation of state; vdW, van der Waals  equation of state; RK, Redl ich-Kwong 
equation of state; PR, Peng Robinson equation of state. 

Kij ,~_~j 111_~ 
. . . .  : 0 .0  O0 OD 
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, ,,X, 9 ,L : 5 9 8  K 
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0.0 40.0 Bo.o 120 0 1co.o 2 0 0 0  

P R E S S U R E  ~ ATM 

Fig. 3. Solubilities of n-decane in compressed 
methane at different temperatures vs pressures. 
The filled cricles are the experimental data 
points [29] which are used to calculate the 
binary interaction parameters. The solid lines 
are the results of the conformal solution PR 
equation of state with the use of the binary 
interaction parameters. The dashed lines are the 
results when the binary interation parameters 
are equal to zero. 
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solution PR equation of state are smaller than those calculated by the con- 
formal solution vdW and RK equations of state. It should be noted that an 
accurate theory of mixture will produce interaction parameters which are 
independent of temperature. The binary interaction parameters are 
calculated by minimizing the following function, which is defined as 
follows: 

F =  { ~  ( E X P ' -  CALi)/CALiI2 (25) 

where EXP is the experimental value, and CAL is the calculated value. 
In Figures 3 and 4, the solid lines are the solubilities of heavy liquid 

(n-decane) in the gas phase along with the binary interaction parameters 
and the dashed lines are the predictions of liquid solubilities in the gas 
phase when the binary interaction parameters are set equal to zero. In Figs 
4 and 6, the gas solubilities (methane and nitrogen) in the liquid phase are 

~s 

k,; 9. U m~ i 
.... " 0.0 QO 0.0 

- - -  : Q285 -QO.51 Q259 

u :  5 2 5 K  

�9 : 5 4 8  K 

41,: 3 7 5 K  

~ , ~ ,  A :  398K 

. . . .  ;o 4.o ,2' . . . . . . . . . . . . .  
PRESSURE, ATM 

Fig. 4. Solubilities of n-decane in compressed 
nitrogen at different temperatures vs pressures. 
The filled circles are the experimental data 
points [29] which are used to calculate the 
binary interaction parameters. The solid lines 
are the results of the conformal solution PR 
equation of state with the use of the binary 
interaction parameters. The dashed lines are the 
results when the binary interaction parameters 
are equal to zero. 
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Fig. S. The gas (methane) solubilities in the 
liquid phase at different temperatures vs 
pressures as calculated by the conformal 
solution Peng-Robinson equation of state with 
the use of the binary interaction parameters. 
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Fig. 6. The gas (nitrogen) solubilities in the 
liquid phase at different temperatures vs 
pressures as calculated by the conformal 
solution Peng-Robinson equation of state with 
the use of the binary interaction parameters. 
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plotted for different isotherms. The gas solubilities in the liquid phase are 
decreased as the temperature is increased, while the liquid solubilities in the 
gas phase are increased as the temperature is increased. 

In a previous publication [8] it was demonstrated that the conformal 
solution PR equation of state is capable of accurately correlating 
solubilities of solids in supercritical gases. It was also demonstrated that the 
interaction parameters appearing in the conformal solution PR equation of 
state are constants and insensitive to the temperature ranges for which 
experimental data were available. In the present report we utilize the 
interaction parameters reported earlier [8] in order to study the effect of 
mixed supercritical solvents on the solubility of solids as reported in Figs. 
7-9. In these figures the mixed solvents consist of mixtures of carbon 
dioxide and ethylene at different compositions in contact with three dif- 
ferent solutes. According to these figures an additional important factor to 
consider in order to predict the solubility of solutes in mixed solvents is the 
solute-solute interaction parameters. 

As demonstrated here, when the solute solute interaction parameters 
are ignored, solubility predictions are quite different from those when the 
correct solute-solute interaction parameters are used. In general, the 
calculations reported in Figs. 7-9 are indicative of the fact that the 
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in carbon dioxide at supercritical, critical, and subcritical tem- 
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solubility of a solute in mixed supercritical solvents cannot be linearly 
correlated with the solubilities in pure solvents and their compositions. In 
other words, mixed solvents could either enhance the solubility of a solute 
or reduce it, depending on the molecular interactive nature of the solvents 
and solute under consideration. This observation introduces a new 
challenge in the design and operation of supercritical fluid extraction and 
retrograde condensation systems, which is the necessity of a search for 
combination of mixed solvents and their composition for the optimum 
design and operation of such processes. 

Experimental observations [30, 32, 33] on a number of solid-gas 
systems have exhibited a supercritical solubility decay of the solute after a 
certain system-specific pressure was exceeded. This same phenomenon can 
be observed using the conformal solution PR equation of state in 
predicting the behavior of model systems. As can be seen from Figs. 10-13, 
2,3-DMN and 2,6-DMN exhibit solubility peaks at temperatures above 
and below the critical temperature of the solvent, the high-pressure 
solubility decay being more extreme at temperatures above the critical tem- 
perature of the solvent. In the cases where ethylene was used as the solvent, 
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Fig. 11. Demonstration of variation of the solubility of 2,3-DMN 
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Fig. 10. 
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a more pronounced solubility peak was generated compared to the carbon 
dioxide solvent trials. 

In the preliminary modeling and calculations reported in this paper we 
have demonstrated the strength of statistical mechanical approaches for a 
better understanding of the phenomena of SFC/RC. In addition to 
experimental measurements there exist a number of theoretically important 
questions to the answered for the full-scale industrial utilization of the 
phenomena of SFC/RC in separation processes. These include (i) full 
understanding of the molecular role of cosolvents and entrainers, (ii) 
prediction of properties of highly asymmetric mixtures consisting of 
molecules with large molecular size and shape differences, (iii) incor- 
poration of hydrogen bonding and other association energies in the for- 
mulation and calculation of solubilities, and (iv) development of analytic 
approaches of statistical mechanics for extension of the ranges of prediction 
to extreme conditions of pressures and/or temperatures. 
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